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Solution 3

1. A bounded function f on [a,b] is said to be locally Lipschitz continuous at = € [a,b] if
there exist some L and ¢ such that

|f(y) — f(z)| < Llz —y|, Yye(z—dz+9).

Show that f is Lipschitz continuous at .

Solution. For y lying outside (z — 6,z + ), |y — x| > 0. Therefore,

[f(y) — f ()]

ly — | 0

[f(y) = f(@)] =

ly — | <
Hence.
f(y) = f@) < L'(ly—=f, Yy, L'=max{L2|flle/0} .
2. Let f be a function defined on (a,b) and z¢ € (a,b).

(a) Show that f is Lipschitz continuous at xq if its left and right derivatives exist at x.

(b) Construct a function Lipschitz continuous at xg whose one sided derivatives do not
exist.

Solution. (a) Let a = f! (zo) and 8 = f’ (x0). For e =1 > 0, there exists §; such that

flz+2) = flz)

z

—al <1,

for 0 < z < 61. It follows that
|f(x+2) = f(@)] <|f(@+2) = f(@) —az] +[az| < (1+|a)z] .
Similarly,

[f(x+2) = f@) <A +[B)Iz], 2 € (=062,0) .

We conclude that |f(z + z) — f(z)] < (1 +79)|2], 2z € (=6,9), § = min{dy,d2} ,7 =
max{|«|, |3|}. By Problem 1, it is Lipschitz continuous at z.

(b) The function f(z) = zsind (z # 0) and = 0 at z = 0. It is Lipschitz continuous at
xo = 0 with L = 1 but both one-sided derivatives do not exist.

3. Can you find a cosine series which converges uniformly to the sine function on [0, 7]? If
yes, find one.

Solution. Yes, extend the sine function on [0, 7] to | sin x|, an even, 27-periodic function.
Since it is continuous, piecewise C!, its cosine series converges uniformly to this extended
function. In particular, this cosine series converges uniformly to sinz on [0, 7].

4. A sequence {a,},n >0, is said to converge to a in mean if

ag+ay+---+ap
n+1

—a, N—00.

(a) Show that {a,} converges to a in mean if {a,} converges to a.

(b) Give a divergent sequence which converges in mean.
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Solution. (a) For € > 0, there is some ng such that |a, — a| < € for all n > ng. Now

a0_|_..._.|_an0 an0+1+...+an

ap + -+ ay '
—_— —a

n+1 n+1 n—+1
B ao+---+an0+(an0+1—a)+-~+(an—a) n0+1
n n+1 n+1 ntl
n —ng ag+ - +ap, no+1
S £+ a
n+1 n+1 n+1

< 2e,

after taking n > nj for a much larger n;.
(b) Consider the sequence {(—1)"}.

5. Let D,, be the Dirichlet kernel and define the Fejer kernel to be F,,(z) = Y i Dr(z).

n+1
(a) Show that

sm”“x ?
F,(z) = ! < ( )> , x#0.

2nr(n+1) \ sinz/2
(b) Let
1 n
onf@) = Zjoskﬂw) :

Show that for every = € [—m, 7|, o,,f(z) converges uniformly to f(x) for any con-
tinuous, 2m-periodic function f. Hint: Follow the proof of Theorem 1.5 and use the
non-negativity of Fj,.

Solution. (a) Use 2sinz/2sin(k/2 4+ 1)z = coskz — cos(k + 1)z and 1 — cos(n + 1)z =
2 n+1

2sin z to get it.
(b) Note that f,ﬂ F,(z)dz =1 as it holds for D,,. Proceeding as in the proof of Theorem
1.5,
(onf)(z) — flz) = 3 Fo(2)(f(z + 2) — f(x)dx
B 1 4 Sin%%"lz)
R mm/_w‘l’(‘(z>sirﬂz/z<f<x+2>—f<x>>dz
1 8 sin?(2+2)
+m /_ﬂ(l - <D5(Z))W(f(:r +2) — f(x))dz
= I+1I.

For the first term, for € > 0, there is some § such that |f(y) — f(z)| < e, for y, |y — x| < 9.
Thus,

1l < \ / B5(2) Fa(2) (fla + 2) — f(2)) d2

< E/éFn(z)dz

< 8/ Fo.(z)dz

= £.
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The second is easy to handle: For this fixed 9,

1
(n+1) " sin? 5/4

II| < 2 —0
1) < o % 2|l =0,

as n — o0.

6. Let f and g be two continuous, 27-periodic functions whose Fourier series are the same.
Prove that f = g.

Solution. Replacing f — g by a single f, it suffices to show that f = 0 if its Fourier series
vanishes identically. Indeed, from [7_ f(z)e™* dx = 0 for all n € Z we know that

[ rwgerds =0,

for all finite trigonometric series g. As f is continuous, by Weierstrass approximation
theorem, for every € > 0, there is a such g satisfying ||f — g||co < &. Therefore,

‘ i f2(x) dx

—T

< |[ 100 - g s

+| [ 1@t aa

< <[ lflds.

—T

Since € > 0 can be arbitrarily small, [7_f? =0, so f =0.

7. Let f,g € Rar whose Fourier series are the same. Show that [ (f — ¢)*(z) dz = 0 and
conclude that f and g are equal almost everywhere.

Solution. Replacing f — g by a single f, it suffices to show that ffﬂ f? = 0if its Fourier
series vanishes identically. Indeed, as in the previous problem, [ fﬁ fg = 0 for all finite trigo
series g. By Weierstrass approximation theorem, this relation holds for all continuous g.
Now, for a characteristic function x[, 3 we consider the continuous piecewise linear function
g which is equal to 1 on [a + d,b — ¢] and vanishes outside [a,b]. Then, from

m U ™ ™

Xande= | fXan—9)dz+ | fgde= | [f(Xjap —9)dz,

—T —T —T

we get

s

I X[a,p) d

< / I — gl dz < 2||]]so.

Since § > 0 is arbitrarily small, we conclude [ fx(q 4 dz = 0. It follows that [ fsdz =
0 for all step functions. Choosing the “Darboux lower sum” sequence s(z) = >, m;xr; ()
which approximate f from below and satisfy

[ =90,

we have
‘ f(f—s)dx—i—/ fsdx

- ‘ "1~ s)as

< Hfuoo]/_ (f - s)da
0.
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Note. Problems 6 and 7 provide a proof to the uniqueness theorem stated in Section 1.2
in our lecture notes.



