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Solution 3

1. A bounded function f on [a, b] is said to be locally Lipschitz continuous at x ∈ [a, b] if
there exist some L and δ such that

|f(y)− f(x)| ≤ L|x− y| , ∀y ∈ (x− δ, x+ δ).

Show that f is Lipschitz continuous at x.

Solution. For y lying outside (x− δ, x+ δ), |y − x| ≥ δ. Therefore,

|f(y)− f(x)| = |f(y)− f(x)|
|y − x|

|y − x| ≤ 2‖f‖∞
δ
|y − x| .

Hence.
|f(y)− f(x)| ≤ L′(|y − x|, ∀y , L′ = max{L, 2‖f‖∞/δ} .

2. Let f be a function defined on (a, b) and x0 ∈ (a, b).

(a) Show that f is Lipschitz continuous at x0 if its left and right derivatives exist at x0.

(b) Construct a function Lipschitz continuous at x0 whose one sided derivatives do not
exist.

Solution. (a) Let α = f ′+(x0) and β = f ′−(x0). For ε = 1 > 0, there exists δ1 such that∣∣∣∣f(x+ z)− f(x)

z
− α

∣∣∣∣ < 1 ,

for 0 < z < δ1. It follows that

|f(x+ z)− f(x)| ≤ |f(x+ z)− f(x)− αz|+ |αz| ≤ (1 + |α|)|z| .

Similarly,
|f(x+ z)− f(x)| ≤ (1 + |β|)|z| , z ∈ (−δ2, 0) .

We conclude that |f(x + z) − f(x)| ≤ (1 + γ)|z|, z ∈ (−δ, δ), δ = min{δ1, δ2} , γ =
max{|α|, |β|}. By Problem 1, it is Lipschitz continuous at x0.

(b) The function f(x) = x sin 1
x (x 6= 0) and = 0 at x = 0. It is Lipschitz continuous at

x0 = 0 with L = 1 but both one-sided derivatives do not exist.

3. Can you find a cosine series which converges uniformly to the sine function on [0, π]? If
yes, find one.

Solution. Yes, extend the sine function on [0, π] to | sinx|, an even, 2π-periodic function.
Since it is continuous, piecewise C1, its cosine series converges uniformly to this extended
function. In particular, this cosine series converges uniformly to sinx on [0, π].

4. A sequence {an}, n ≥ 0, is said to converge to a in mean if

a0 + a1 + · · ·+ an
n+ 1

→ a , n→∞ .

(a) Show that {an} converges to a in mean if {an} converges to a.

(b) Give a divergent sequence which converges in mean.
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Solution. (a) For ε > 0, there is some n0 such that |an − a| < ε for all n > n0. Now∣∣∣∣a0 + · · ·+ an
n+ 1

− a
∣∣∣∣ =

∣∣∣∣a0 + · · ·+ an0

n+ 1
+
an0+1 + · · ·+ an

n+ 1
− a
∣∣∣∣

=

∣∣∣∣a0 + · · ·+ an0

n+ 1
+

(an0+1 − a) + · · ·+ (an − a)

n+ 1
− n0 + 1

n+ 1
a

∣∣∣∣
≤ n− n0

n+ 1
ε+

a0 + · · ·+ an0

n+ 1
+
n0 + 1

n+ 1
a

≤ 2ε,

after taking n ≥ n1 for a much larger n1.

(b) Consider the sequence {(−1)n}.

5. Let Dn be the Dirichlet kernel and define the Fejer kernel to be Fn(x) =
1

n+ 1

∑n
k=0Dk(x).

(a) Show that

Fn(x) =
1

2π(n+ 1)

(
sin(n+1

2 )x

sinx/2

)2

, x 6= 0 .

(b) Let

σnf(x) =
1

n+ 1

n∑
k=0

Skf(x) .

Show that for every x ∈ [−π, π], σnf(x) converges uniformly to f(x) for any con-
tinuous, 2π-periodic function f . Hint: Follow the proof of Theorem 1.5 and use the
non-negativity of Fn.

Solution. (a) Use 2 sin z/2 sin(k/2 + 1)z = cos kz − cos(k + 1)z and 1 − cos(n + 1)z =
2 sin2 n+1

2 z to get it.

(b) Note that
∫ π
−π Fn(z) dz = 1 as it holds for Dn. Proceeding as in the proof of Theorem

1.5,

(σnf)(x)− f(x) =

∫ π

−π
Fn(z)(f(x+ z)− f(x) dx

=
1

2π(n+ 1)

∫ π

−π
Φδ(z)

sin2(n+1
2 z)

sin2 z/2
(f(x+ z)− f(x)) dz

+
1

2π(n+ 1)

∫ π

−π
(1− Φδ(z))

sin2(n+1
2 z)

sin2 z/2
(f(x+ z)− f(x)) dz

= I + II .

For the first term, for ε > 0, there is some δ such that |f(y)− f(x)| < ε, for y, |y− x| < δ.
Thus,

|I| ≤
∣∣∣∣∫ δ

−δ
Φδ(z)Fn(z)(f(x+ z)− f(x)) dz

∣∣∣∣
≤ ε

∫ δ

−δ
Fn(z) dz

≤ ε

∫ π

−π
Fn(z) dz

= ε .
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The second is easy to handle: For this fixed δ,

|II| ≤ 1

2π(n+ 1)
× 1

sin2 δ/4
× 2‖f‖∞ → 0 ,

as n→∞.

6. Let f and g be two continuous, 2π-periodic functions whose Fourier series are the same.
Prove that f ≡ g.

Solution. Replacing f − g by a single f , it suffices to show that f ≡ 0 if its Fourier series
vanishes identically. Indeed, from

∫ π
−π f(x)einx dx = 0 for all n ∈ Z we know that∫ π

−π
f(x)g(x) dx = 0 ,

for all finite trigonometric series g. As f is continuous, by Weierstrass approximation
theorem, for every ε > 0, there is a such g satisfying ‖f − g‖∞ < ε. Therefore,∣∣∣∣∫ π

−π
f2(x) dx

∣∣∣∣ ≤ ∣∣∣∣∫ π

−π
f(x)(f(x)− g(x)) dx

∣∣∣∣+

∣∣∣∣∫ π

−π
f(x)g(x) dx

∣∣∣∣
≤ ε

∫ π

−π
|f(x)| dx .

Since ε > 0 can be arbitrarily small,
∫ π
−π f

2 = 0, so f ≡ 0.

7. Let f, g ∈ R2π whose Fourier series are the same. Show that
∫ π
−π(f − g)2(x) dx = 0 and

conclude that f and g are equal almost everywhere.

Solution. Replacing f − g by a single f , it suffices to show that
∫ π
−π f

2 = 0 if its Fourier

series vanishes identically. Indeed, as in the previous problem,
∫ π
−π fg = 0 for all finite trigo

series g. By Weierstrass approximation theorem, this relation holds for all continuous g.
Now, for a characteristic function χ[a,b] we consider the continuous piecewise linear function
g which is equal to 1 on [a+ δ, b− δ] and vanishes outside [a, b]. Then, from∫ π

−π
fχ[a,b] dx =

∫ π

−π
f(χ[a,b] − g) dx+

∫ π

−π
fg dx =

∫ π

−π
f(χ[a,b] − g) dx ,

we get ∣∣∣∣∫ π

−π
fχ[a,b] dx

∣∣∣∣ ≤ ∫ π

−π
|f ||χ[a,b] − g| dx ≤ 2‖f‖∞δ.

Since δ > 0 is arbitrarily small, we conclude
∫ π
−π fχ[a,b] dx = 0. It follows that

∫ π
−π fs dx =

0 for all step functions. Choosing the “Darboux lower sum” sequence s(x) =
∑

jmjχIj (x)
which approximate f from below and satisfy∫ π

−π
(f − s) dx→ 0 ,

we have ∫ π

−π
f2 dx =

∣∣∣∣∫ π

−π
f(f − s) dx+

∫ π

−π
fs dx

∣∣∣∣
=

∣∣∣∣∫ π

−π
f(f − s) ds

∣∣∣∣
≤ ‖f‖∞

∣∣∣∣∫ π

−π
(f − s) dx

∣∣∣∣
→ 0 .
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Note. Problems 6 and 7 provide a proof to the uniqueness theorem stated in Section 1.2
in our lecture notes.


